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A.1 Proofs4

A.1.1 Proof of Proposition 2.25
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Transforming the conditional Laplace transform of yt using Assumption 4, we obtain the desired6

result. �7

A.1.2 Proof of Proposition 2.38

The fact that φP
yt−1

(defined in Assumption 4) is exponential affine in wt−1 directly stems from9

the knowledge of the Laplace transform of the non-central Gamma distribution (see Monfort et10

al. 2017). (Functions A(y)
y , A(δ)

y and By are deduced from the same Laplace transform.) Hence11

Assumption 4 is satisfied, and Proposition 2.2 therefore applies. �12

A.1.3 Proof of Propositions 2.713

Proposition 2.4 gives:
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which shows that Equations (10) and (11) are satisfied for h = 1.14

Let us now assume that it holds for a given horizon h, with h > 0. We then have15
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which implies that Equation (10) then also holds for h+ 1, leading to the result. �16
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A.1.4 Proof of Lemma 3.11

For a given u1 and u2 ≥ 02
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,

and since in the second term on the right-hand side exp(−u2 Z2)1{Z2>0} → 0 when u2 → +∞,3

relation (3.1) is a consequence of the Lebesgue theorem. �4

A.1.5 Proof of Proposition 3.2 (Bond Pricing under the RMV Convention)5

Consider the case of a one-period bond, on date t. According to Definition 3.1, the recovery value6

of date t+ 1 is the price of the bond if there had been no credit event. For this one-period bond,7

t+ 1 is also the maturity date, and the recovery value is therefore 1. As a result, under the RMV8

convention (Definition 3.1) and with the recovery rate assumption of Equation (15), the price of a9

one-period bond is given by:10
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where the first “1” on the right-hand side stands for the price of the bond in the case of no default11
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the previous equation becomes:13
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which proves Equation (18) for h = 1.14

Consider now the pricing of a two-period bond, as of date t. The definitions of the recovery15

value and of the recovery rate in the RMV case – Definition 3.1 and Equation (15), respectively –16

imply that if a default occurs on date t+ 1, the payoff is exp(−δi,t+1)B̃i(t+ 1, 1). In the previous17

expression, according to Definition 3.1, B̃i(t + 1, 1) is the price of the bond at time t + 1 “if there18

had been no credit event on this date” (Definition 3.1); this recovery value B̃i(t+ 1, 1) is therefore19

equal to Bi(t+ 1, 1), whose expression is given by Equation (a.1). This implies that:20
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where the last equality uses (a.1). This proves Equation (18) for h = 2. Iterating on the previous21

arguments clearly proves Equation (18) for any h ∈ N.22

23

Let us now prove relation (19). Given rt = ξ0 + ξ′wt and δi,t = e′δiwt, we can write:
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which leads to the result. �24
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A.1.6 Proof of Proposition 3.3 (Bond Pricing under the RFV Convention)1

Given relation (17), as well as the recovery assumption (14) and Πi,t(h) = 1, the price of the2

defaultable zero-coupon bond of interest can be written as:3
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Using Lemma 3.1, the previous relation becomes:
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which leads to Equation (20) using the definition of the multi-horizon Laplace transform φQ
wt

(see4

Proposition 2.7). �5

A.1.7 Proof of Proposition 3.4 (CDS pricing)6

Using Lemma 3.1, relation (21) can be written as:7
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Let us then split relation (22) as:1
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Then, let us rewrite the RFV pricing formula (a.2) for different values of the recovery rate. Using2

the notation3
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we obtain:4
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such that:5

PSi(t, h) = BRFV
i (t, h; 0, 0)−BRFV

i
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)
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The price of default protection (23) is easily obtained by imposing (a.3) = (a.7), thus proving6

Proposition 3.4. �7

A.1.8 Multi Currency Credit Default Swap Pricing8

In this subsection, we extend the CDS pricing formula provided by Proposition 3.4 (Subsection 3.3)9

to the case where the currency of denomination of the CDS is not the domestic one (that is the10

currency in which the assets of the reference entity are denominated). Typically, a CDS protection11

on sovereign bonds is frequently available in a foreign and in the domestic currency. The reason12

behind the development of foreign-currency-denominated CDS is the protection they provide not13

only against the credit event but also against the associated potential depreciation of the domestic14

currency with respect to the foreign one (see Section 4.7).15

Consider a CDS denominated in a foreign currency. We denote by st the log of the exchange16

rate between the domestic and the foreign currency, where the exchange rate is defined as the price17

in the domestic currency of one unit of foreign currency. That is, an increase in st corresponds to a18

depreciation of the domestic currency. Let us denote by Sf
i (t, h) the foreign-currency-denominated19

CDS spread, set at date t with maturity t+ h.20
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Both the notional and the premium payments of a CDS are expressed in the currency of de-1

nomination. We assume in the following that the notional of the CDS is equal to one unit of the2

foreign currency (i.e. to exp(st) units of the domestic currency). The CDS spread is such that the3

present value of the payments made by the protection buyer (the fixed leg) is equal to the present4

value of the payment made by the protection seller in case of default (the floating leg).5

As far as the fixed leg is concerned, if entity i has not defaulted at date t+k (≤ t+h), the cash6

flow on this date, expressed in the domestic currency, is: Sf
i (t, h) exp(st+k). The present value of7

the fixed-leg payments, expressed in the domestic currency (PBf
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Under the RFV convention, the protection seller will make a payment of (1−ϱi,t+k) exp(st+k) (the9

Loss-Given-Default) at date t+k in case of default over the time interval ]t+k−1, t+k]. (Observe10

that the recovery rate ϱi,t+k is the same as for a CDS denominated in the domestic currency.) The11
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PSf
i (t, h) =

h∑
k=1

EQ

[
exp

(
st+k −

k−1∑
ℓ=0

rt+ℓ

)
(1− ϱi,t+k)

(
1{δi,t:t+k−1=0} − 1{δi,t:t+k=0}

)
|wt

]
,

(a.9)
and the date-t CDS spread Sf

i (t, h) is such that PBf
i (t, h) = PSf
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)
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We then have the following:15

Proposition a.1 The no-arbitrage CDS spread Sf
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where:19
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is the date-t price of a foreign-currency-denominated bond paying (in domestic currency) exp(st) ϱi,t+k1

at t+ k if τi ∈]t+ k − 1, t+ k] and paying exp(st+h) at t+ h if the default does not happen during2

the bond lifetime.3

Proof Straightforward generalization of Proposition 3.4. �4

It can be noted that the CDS spread Si(t, h) of a CDS denominated in the domestic currency5

(given by Proposition 3.4) coincides with the one resulting from Proposition a.1 when χ = 0 and6

us = 0.7

A.1.9 Defaultable Bonds Pricing under Recovery of Treasury (RT)8

The recovery of Treasury (RT), introduced by Jarrow and Turnbull (1995) and Longstaff and9

Schwartz (1995), states that, upon issuer default, the creditor receives a fraction (corresponding to10

the recovery rate) of the present value of the principal. This means that, in case of default at date11

τi = t+ k, the payoff is:12
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In this case, we have the following proposition.15
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Proof The price Bi(t, h) is equal to:
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Let us slightly adapt the notation introduced in Equation (a.12) as follows:
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(which would be the price of a defaultable bond under RFV if the loadings of the recovery rate
depended on the horizon at which the entity defaults). The price of a defaultable bond under the
RT convention then writes:
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Using the formulation of the multi-horizon Laplace transform leads to the result. �1

A.2 Semi-Strong VAR Representation of the Model2

The model described by Assumptions 2, 3 and 5 can be written as follows:3
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where the yj,t are independent conditional to Ft−1 and the δj,t’s are independent conditionally to4

(Ft−1, yt).5

Proposition a.3 The dynamics of the state vector wt = (yt, δt), described by the four previous6

equations admits a semi-strong VAR representation. Specifically, we have:7

wt =M0 +M1wt−1 +Σ(wt−1)ξt, (a.15)

where process {ξt} is a martingale difference sequence whose covariance matrix, conditional on Ft−1,
is the identity matrix and where the conditional covariance matrix Var(wt|Ft−1) = Σ(wt−1)Σ(wt−1)

′

is of the form: diag (M2 +M3wt−1) diag (M2 +M3wt−1)M
′
4

M4diag (M2 +M3wt−1) M4 diag (M2 +M3wt−1)M
′
4 + diag (M5 +M6wt−1)

 ,
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matrices M0, M1, M2, M3, M4, M5 and M6 being defined below in the proof. (If u is a nu-1

dimensional vector, diag(u) denotes the diagonal matrix whose diagonal entries are the components2

of vector u.)3

Proof Computing M0 and M1 amounts to computing E (wt|Ft−1):4

E

 yt

δt

 ∣∣Ft−1

 = E

E

 yt

δt

 ∣∣Ft−1, yt

 |Ft−1


= E

 yt

µδ ⊙
(
αλ + β

(y)′

λ yt +C′δt−1

)
 |Ft−1


=

 0

µδ ⊙ αλ

+

 µy ⊙
(
νy + αy + β

(y)′
y yt−1 + I′δt−1

)
µδ ⊙

(
β
(y)′

λ

[
µy ⊙

(
νy + αy + β

(y)′
y yt−1 + I′δt−1

)]
+C′δt−1

)


=

 µy ⊙ (νy + αy)

µδ ⊙ αλ + {(µδ1′)⊙ β
(y)′

λ }{µy ⊙ (νy + αy)}

+

 (µy1
′)⊙ β

(y)′
y (µy1

′)⊙ I′

{(µδ1′)⊙ β
(y)′

λ }{(µy1′)⊙ β
(y)′
y } {(µδ1′)⊙ β

(y)′

λ }{(µy1′)⊙ I′}+ {(µδ1′)⊙C′}

 yt−1

δt−1


=

 µy

µδ

⊙

 νy + αy

αλ + β
(y)′

λ {µy ⊙ (νy + αy)}


︸ ︷︷ ︸

=M0

+

diag

 µy

µδ

 β
(y)′
y I′

β
(y)′

λ {(µy1′)⊙ β
(y)′
y } β

(y)′

λ {(µy1′)⊙ I′}+C′


︸ ︷︷ ︸

=M1

 yt−1

δt−1

 .

The computation of Σ(wt−1)Σ(wt−1)
′ = Var (wt|Ft−1) is decomposed into the computation of5

Var(yt|Ft−1), Var(δt|Ft−1) and Cov(yt, δt|Ft−1).6

Let us start with Var(yt|Ft−1). Because the yi,t’s are conditionally independent, matrix Var(yt
∣∣Ft−1)7

is diagonal. Using Proposition 2.3 of Monfort, Pegoraro, Renne, and Roussellet (2017), the diagonal8

entries of this matrix are the components of the following vector:9

µy ⊙ µy ⊙ (νy + 2αy) + 2diag(µy ⊙ µy)
(
β(y)

′
y yt−1 + I′δt−1

)
=:M2 +M3wt−1.

In order to compute Var(δt|Ft−1), we use the law of total variance:10

Var(δt|Ft−1) = Var(E(δt
∣∣yt,Ft−1)

∣∣Ft−1)︸ ︷︷ ︸
=A

+E(Var(δt
∣∣yt,Ft−1)

∣∣Ft−1)︸ ︷︷ ︸
=B

.
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A = Var(E(δt
∣∣yt,Ft−1)

∣∣Ft−1) = Var({(µδ1′)⊙ β
(y)′

λ }yt
∣∣Ft−1)

= {(µδ1′)⊙ β
(y)′

λ }Var(yt
∣∣Ft−1){(µδ1′)⊙ β

(y)′

λ }′

= {(µδ1′)⊙ β
(y)′

λ }︸ ︷︷ ︸
=M4

diag

M2 +M3

 yt−1

δt−1

 {(µδ1′)⊙ β
(y)′

λ }′.

Because the δi,t’s are independent conditionally to Ft−1, B = E(Var(δt|yt,Ft−1)|Ft−1) is a1

diagonal matrix whose diagonal entries are the components of2

E
(
2µδ ⊙ µδ ⊙ αλ + 2diag(µδ ⊙ µδ)

(
β
(y)′

λ yt +C′δt−1

) ∣∣Ft−1

)
= 2µδ ⊙ µδ ⊙ αλ + 2diag(µδ ⊙ µδ)

(
β
(y)′

λ

{
µy ⊙

(
νy + αy + β(y)

′
y yt−1 + I′δt−1

)}
+C′δt−1

)
= 2µδ ⊙ µδ ⊙ αλ + 2diag(µδ ⊙ µδ)β

(y)′

λ {µy ⊙ (νy + αy)}

+2diag(µδ ⊙ µδ)β
(y)′

λ

{
(µy1

′)⊙ β(y)
′

y

}
yt−1

+2diag(µδ ⊙ µδ)
[
β
(y)′

λ

{
(µy1

′)⊙ I′
}
+C′

]
δt−1 =:M5 +M6

 yt−1

δt−1

 .
The last step consists in computing Cov(yt, δt|Ft−1):3

Cov(yt, δt
∣∣Ft−1) = E(Cov(yt, δt

∣∣yt,Ft−1)
∣∣Ft−1)︸ ︷︷ ︸

=0

+Cov(yt,E(δt
∣∣yt,Ft−1)

∣∣Ft−1)

= Cov(yt,E(δt
∣∣yt,Ft−1)

∣∣Ft−1)

= Cov(yt, (µδ1′)β
(y)′

λ yt
∣∣Ft−1) = Var(yt

∣∣Ft−1)β
(y)
δ (1µ′δ)

= diag

M2 +M3

 yt−1

δt−1

β
(y)
δ (1µ′δ)

= diag

M2 +M3

 yt−1

δt−1

M ′
4.

�4

A.3 Empirical Investigation of Credit Risk Channels5

To gain an intuition about the added flexibility provided by each credit risk channel in the model,6

we present here a calibrated example.7

A.3.1 Summary of the Monte Carlo Experiment8

This subsection synthetically presents the main results of a two-entity calibration and simulation9

exercise that has been conducted to better understand the different channels at play in our frame-10

work. Detailed results in the following sections.11

55



We consider an economy with two defaultable entities whose credit-event intensities are driven1

by a single common latent factor yt, independent from the riskless rate rt. In the baseline case, the2

entities are identical and feature a null recovery rate in case of default and the SDF shows pricing3

associated with yt and rt only. We calibrate the baseline model such that the average 5y CDS is at4

85bps, and the credit-risk premium goes from 0bp at the short-end to 20bps for long maturities.5

We then construct three alternative parameterizations by respectively allowing for direct conta-6

gion from 1 to 2 (C2,1 > 0), indirect contagion from 1 to yt (I1 > 0) and surprise pricing of entity7

2 (S2 > 0). Each parameter is uniquely pinned down such that the 5y CDS spread of entity 2 is at8

100bps, keeping yt at its baseline average. Comparative statics shows that the surprise parameter9

has an effect mainly at the short-end through increased risk premia, and confounds with the direct10

contagion effect for long enough maturities. In contrast switching on indirect contagion has no11

effect on the short-end, but increases the slope of the CDS curve with respect to the two other12

cases.13

We simulate long time series of factors and asset prices for each parameterization. Although14

resulting from particular parameterizations of the model, this exercise provides some guidance15

on whether each case produces observational differences in observed moments. Some effects are16

mechanical. In particular, activating contagion effects augments default-clustering effects. The17

effect of surprise is only observed on asset prices (since it does not affect the physical dynamics of the18

state variable), pushing the means of short-maturity CDS spreads upwards. Second-order moments19

may also help distinguish between different mechanisms: the auto-correlations of simulated spreads20

are for instance lower for direct than for indirect contagion.3021

Therefore, though it is difficult to draw general conclusions from specific calibrations, the sim-22

ulation results point towards identification possibilities. To investigate this further, we conduct a23

Monte Carlo experiment simulating 500 trajectories of 240 months for each parameterization, dis-24

criminating whether defaults are observed or not. We estimate unrestricted versions of the model,25

authorizing (direct and indirect) contagion and surprise mechanisms at the same time whereas the26

true model only features one of these channels. Estimation is performed with approximate-filtering27

pseudo Maximum Likelihood (filter-based ML) and unconditional Generalized Method of Moments28

(GMM), to compare the precision of both methods. Our results can be summarized as follow.29

First, the filter-based ML method proves more efficient in recovering the correct channel in finite30

samples. (This justifies our utilization of filtering in our empirical exercise in the paper.) Second,31

including the credit-event variables δt as observables in the filter increases the quality of estimation,32

even when no defaults are observed. Last, observing in-sample defaults improves the ability of the33

filter to correctly identify the mechanisms at play.34

We detail these results afterwards.35

A.3.2 A Benchmark Economy36

We consider an economy with two defaultable entities with credit event variables δt = (δ1,t, δ2,t)37

and whose probability of suffering a credit event is driven by a single common factor yt. The38

historical default intensities are parameterized as:39

λ1,t = β
(y)
λ yt, and λ2,t = β

(y)
λ yt +C · δ1,t−1 , (a.16)

30The interpretation is the following: when entity 1 defaults at t − 1, the credit-event intensity λ2,t jumps at t
with δ1,t through contagion, whereas it jumps through the feedback loop on yt in the indirect contagion case. Both
parameterization make the CDSs of entity 2 jump upwards. Since yt is persistent however, this increase in CDSs
only persists in the indirect contagion case, not in the direct one. This decreases the autocorrelation of CDSs when
direct contagion is authorized.
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and the scale parameters µδ1 = µδ2 = µδ are the same for both entities. Both components of the1

Poisson mixing variable are drawn independently. The common factor yt and the risk-free rate rt2

are independent and characterized by Gamma dynamics:3

Py,t

∣∣Ft−1 ∼ P
(
β
(y)
y yt−1 + I · δ1,t−1

)
and yt

∣∣Py,t ∼ Γνy+Py,t (µy) ,

Pr,t

∣∣rt−1 ∼ P (αr + βrrt−1) and rt
∣∣Pr,t ∼ γPr,t (µr) .

(a.17)

Last, the one-period SDF is given by:4

Mt−1,t = exp
(
−rt−1 + θrrt + θyyt + S · δ2,t − ψP

w,t−1(θw)
)
. (a.18)

In our baseline case, parameters (C, I, S) are set to zero.5

A.3.3 Calibration of the Illustrative Example6

Our baseline model’s calibration is at the monthly frequency and is presented in Table A.1. In7

order to avoid any discrepancies between recovery conventions, we impose that the recovery rate8

is zero (µδ = 50, the RR being defined by Equation 15). In this case, CDS spreads are virtually9

indistinguishable from credit spreads. We calibrate the short-rate parameters such that it has a10

persistence µr · βr of 0.97, a mean of 3% annualized and a standard deviation of 1% annualized.11

The common factor yt is assumed to be quite persistent, with an autocorrelation of 0.95. The rest12

of the parameters are picked such that reasonable term structures and risk premiums are obtained.13

Table A.1: Baseline Scenario Calibration

δt yt rt Mt−1,t

β
(y)
λ 5 · 10−4 β

(y)
y 0.95 βr 118,172.6 θr 0.05

µδ 50 µy 1 µr 8.21 · 10−6 θy 0.01

C 0 νy 0.06 αr 9.1371 S 0

I 0

We present the term structures of the baseline scenario on Figure A.1. We assume that rt and14

yt are at their respective unconditional means of 3% (annualized) and 1.2 while the δt are fixed at15

0. The riskless curve slopes up from 3% to 5% at the 10y maturity, and the term premium follows16

the same pattern from 0% to 2%. Panels (b) and (c) present the bond credit spreads and the CDS17

spreads, respectively. These two curves are virtually identical, small differences only resulting from18

the discrepancy between zero-coupon and par yields. In the following, we only focus on the term19

structure of CDSs to simplify exposition of results. The observed term structure of CDS spreads is20

upward sloping, from 70bps at the 1m maturity to nearly 85bps at the 10y maturity. Most of the21

upward sloping pattern is explained by increasing credit risk premiums, from 0bps to 20bps.22

A.3.4 Contagion, Systemic Credit Risk and Credit-Event Pricing23

Our first experiment consists in relaxing successively the three channels provided by our credit risk24

model. We thus consider hereafter calibrations where either C > 0, I > 0 or S > 0. In order to25
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Figure A.1: Calibrated Yield Curves: Effect of Each Channel
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Notes: This figure presents the term structures obtained for the baseline calibration presented in Table A.1. Panel
(a) presents the yields and term premiums associated with riskless bonds, panel (b) presents the term structure
of defaultable yields minus riskless yields, and panel (c) presents the CDS spreads and credit risk premiums. The
term structures are obtained by assuming that rt and yt are at their means and that δt are null so no defaults have
happened.

have comparable calibrations, we keep the values of rt and yt at the baseline unconditional mean.1

We pick the value of each parameter such that the 5y CDS of the entity 2 is equal to 100bps. We2

obtain that either C = 5.7561 · 10−3, I = 0.6724, or S = 3.5371 · 10−3.3

Figure A.2: Calibrated Yield Curves: Effect of Each Channel

75
80

85
90

95
10

0

Panel (a): CDS Spreads

maturity (years)

A
nn

ua
liz

ed
 b

ps

0 1 2 3 4 5 6 7 8 9 10

●

●

●

●
● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●
● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ●

●

●

●

Contagion
Systemic
Surprise

Entity #1
Entity #2 5

10
15

20
25

30
35

Panel (b): CDS Credit Premia

maturity (years)

A
nn

ua
liz

ed
 b

ps

0 1 2 3 4 5 6 7 8 9 10

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ●

Notes: This figure presents the term structures obtained for the alternative scenarios. Panel (a) presents the CDS
spreads for each scenario, while panel (b) presents the associated credit risk premiums. The term structures are
obtained by assuming that rt and yt are at the means implied by the baseline scenario and that δt are null so no
defaults have happened. Term structures are presented for both entity 1 (solid grey lines) and 2 (black dashed lines).
Contagion, systemic risk and credit event pricing scenarios are presented in red, blue and green, respectively.

The resulting yield curves are presented on Figure A.2. The solid grey lines present the results4
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obtained for entity 1, which are virtually insignificant compared to the baseline. In contrast, the1

contagion, systemic and surprise scenarios propose three distinct term structures of CDS spreads on2

the second entity. First, switching on the contagion or systemic channels has a negligible effect on3

the very short end of the curve but creates a more upward sloping pattern than the baseline. The4

contagion scenario creates a curve that has more curvature and flattens out after the 5y maturity.5

In contrast, in the systemic risk scenario, the CDS curve has not yet plateaued at the 10y maturity.6

Second, both contagion and surprise scenarios have CDS term structures that are virtually the same7

after the 2y maturity. Third, the surprise scenario creates a large shift in the very short-end of the8

curve making it increase by more than 15bps at the 1m maturity. This effect is mainly operating9

through credit risk premiums, and the surprise scenario is the only one able to generate positive10

premiums at the very short-end (17bps, see Panel (b) of Figure A.2). This premiums is always at11

least 10bps above the credit risk premiums implied by the other scenarios.12

A.3.5 Comparing Dynamics Implied by the Three Channels13

We turn now to the study of the flexibility provided by each channels for the credit risk dynamics.14

We simulate four versions of our model, the baseline one and the three different scenarios. We15

simulate one trajectory of a million dates and compute associated statistics for each scenario.3116

Table A.2 presents the obtained default probability of each entity, one-period ahead contagion17

probability P
(
δi,t > 0

∣∣δj,t−1 > 0
)

and probability of simultaneous default, and conditional mean of18

the common factor yt given that there was no default at t− 1, that entity 1 defaulted at t− 1, and19

that entity 2 has defaulted at t − 1, respectively to measure Granger Causality. We also compute20

the same quantities for default events happening at t instead to measure instantaneous correlation.21

Each scenario has typically the expected effect. Baseline default probabilities of each entity is22

0.06%, and the contagion and simultaneous default probabilities are below 1%. With contagion,23

23% of the defaults of entity 1 are followed by defaults of the second entity. The systemic risk24

channel increases the marginal probabilities to 0.09% because of the feedback loop, and it increases25

the contagion probabilities up to about 3%. The probability of simultaneous defaults also jumps26

up to 2.2%.3227

As far as yt is concerned, the contagion channel reduces slightly its average value necessary to28

observe a default of entity 2. The strongest effects can be observed when the systemic risk channel29

is switched on. Upon default of the first entity, the conditional mean of yt jumps to more than 7630

compared to 1.7 without default. Note that this also happens to a smaller extent upon default of31

the second entity, emphasizing that defaults tend to be more clustered in this scenario.32

Up to now, our reasoning for identification of the different channels is based on the differences of33

dynamics before and after defaults occur. In practice, some entities will not experience any credit34

event in a given sample and the identification power resulting from observed asset prices can be35

questioned. Thus, we compare the dynamics of CDS obtained for each of these scenarios. Using36

the same simulated sample, we compare the conditional means and variances, autocorrelations and37

cross-correlations of the term structure of CDS spreads. All three scenarios unsurprisingly increase38

the mean and standard deviation of CDSs with respect to the baseline. The effects for the contagion39

31We use the same shocks across scenarios for the simulation of Pδ,t, δt, Py,t, yt, Pr,t and rt. Since Gamma processes
are conditionally heteroskedastic weak AR processes, we simulate uniform distributions and use inverse cumulative
distribution functions to back out the simulations from the desired conditional distribution. Since the parameters
differ across scenarios, the inverse CDFs will be different, thus creating the differences in the simulated data despite
using the same uniform shocks as inputs. Any difference between scenarios are thus purely the result of difference in
specifications.

32Note that since the only difference between the baseline and the surprise scenario lies in the SDF specification,
both result in the same physical dynamics.
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Table A.2: Moments of simulated factors

Panel (a): Moments of credit event variables δt

Default Pr (%) Contagion Pr (%) Simultaneous Pr (%)

1 2 1 → 2 2 → 1 1 → 2 2 → 1

Baseline 0.06 0.06 0.82 0.64 0.99 0.96

Contagion 0.06 0.08 22.73 0.53 0.99 0.79

Systemic 0.09 0.09 2.87 1.11 2.18 2.10

Panel (b): Moments of credit intensity factor yt

No Dflt Dflt #1 Dflt #2 No Dflt Dflt #1 Dflt #2

E [yt|δt−1] E [yt|δt]

Baseline 1.17 20.13 19.86 1.17 21.17 20.97

Contagion 1.17 20.13 19.54 1.17 21.17 20.60

Systemic 1.67 76.21 43.73 1.69 45.43 45.95

Notes: These Tables present the statistics obtained through simulations of length 1,000,000 of the baseline scenario
of Table A.1 and the three scenarios. In panel (a), the first two columns present the average number of times δt is
positive. Columns Contagion Pr counts the proportion of default of the one entity at t when the other has defaulted
at t−1. Columns Simultaneous Pr counts the proportion of default of the one entity at t when the other has defaulted
at the same time. The six columns of Panel (b) present the conditional mean of the default intensity yt conditional
on no default at t− 1, default of entity 1 at t− 1, default of entity 2 at t− 1, and the same statistics for default at t,
respectively.

and surprise scenarios are quite similar, and the average 1-year CDS spread jumps from 77bps to1

92bps and 93bps respectively (see Table A.3, first four rows). In contrast, the systemic scenario2

makes the average 1-year CDS jump to 107bps. Second, the effects of the contagion and surprise3

scenarios are distinguishable through the auto- and cross-correlations of the CDS spreads. The4

baseline case produces first and twelfth order autocorrelation of 0.95 and 0.55, respectively, which5

drop down to 0.72 and 0.42 for the contagion case only. The effects are qualitatively similar across6

the term structure. We conclude that, in the context of this synthetic model, while the systemic7

channel conveys a bigger level impact on CDS spreads, the effects of contagion and surprise can be8

distinguished looking at the correlations of CDS spreads.9

A.4 Monte Carlo Estimation Exercise10

To get further insight on the identification power conveyed by each channel of the model, we conduct11

an estimation analysis on simulated trajectories. The framework is the synthetic one presented in12

Online Appendix A.3. Our objective is twofold. We estimate unrestricted versions of the model,13

authorizing contagion, systemic, and surprise channels at the same time whereas the true model14
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Table A.3: Moments of CDS spreads

mean sd ρ(1) ρ(12) cor(1y) cor(5y) cor(10y)

1y

Baseline 76.62 233.53 0.9511 0.5471 1 0.9975 0.9915

Contagion 91.75 280.70 0.7172 0.4157 1 0.9673 0.9553

Systemic 106.80 417.72 0.9641 0.6475 1 0.9906 0.9654

Surprise 92.93 283.81 0.9511 0.5472 1 0.9962 0.9877

5y

Baseline 84.21 120.16 0.9511 0.5480 0.9975 1 0.9983

Contagion 100.32 145.04 0.8778 0.5077 0.9673 1 0.9974

Systemic 115.57 269.14 0.9605 0.6291 0.9906 1 0.9919

Surprise 100.41 145.32 0.9511 0.5479 0.9962 1 0.9976

10y

Baseline 85.38 76.19 0.9508 0.5473 0.9915 0.9983 1

Contagion 101.03 92.93 0.8844 0.5106 0.9553 0.9974 1

Systemic 114.81 197.69 0.9555 0.6044 0.9654 0.9919 1

Surprise 101.00 93.08 0.9505 0.5465 0.9877 0.9976 1

Notes: These Tables present the statistics obtained through simulations of length 1,000,000 of the baseline scenario
of Table A.1 and the three scenarios. The three blocks of rows compare the statistics for the CDS spreads of the 1y,
5y and 10y maturities. First two columns compare mean and standard deviations, the next two columns (ρ(1) and
ρ(12)) compare the first and twelfth order autocorrelation, and the remaining three columns compare the correlation
with the other maturities.

only features one of the channels. This allows us to observe whether the channels are sufficiently1

different to be identified, even on finite samples. Estimation is performed by Maximum Likelihood2

(ML), where the likelihood function is computed by Kalman-filter techniques, and by unconditional3

GMM, allowing us to compare the precision of each method. We conduct the experiment over4

several samples such that some of them contain no observed defaults.5

A.4.1 Framework6

We assume, as is common in empirical works, that the common factor yt is unobserved by the7

econometrician but δt is observable in real-time. She has also access to the term structures of8

bond credit spreads {CSi(t, h)}h∈Hi
, where Hi is the discrete set of observable maturities and i9

refers to the defaultable entities.33 More precisely, for any entity i and any maturity h, the bond10

33Since the short-term rate is independent from the rest of the system, we can directly consider the bond credit
spreads and forget about the riskless curve parameters. Since recovery rates are null, we focus on bond credit spreads
only as information contained in the CDS curve is redundant. In a general case, despite the affine property of the
model, CDS spreads are not affine in the factors (yt, δt). This forces the econometrician to use a non-linear filter as

61



credit spreads are observed up to Gaussian white noise measurement errors independent across1

time, maturities and entities and with standard deviation σε = 1bps. The set of parameters2

to be estimated is Θ = {ρδ, βy, νy, θy,C, I,S, σε}, where ρδ := µδ · β(y)λ .34 These measurement3

equations are accompanied with transition equations defining the VARG joint dynamics of yt and4

δt as functions of Θ, which are detailed below in A.4.2. These equations together form the state-5

space model and allow us to proceed to approximate filtering maximum likelihood or moment-based6

estimation. These methods are described below.7

A.4.2 Estimation Methods8

Transition Equations: The conditional mean and the conditional variance-covariance of wt =9

(yt, δ1,t, δ2,t)
′ is given by:10

E
(
wt

∣∣Ft−1

)
=


νy

ρδ · νy

ρδ · νy

+


β
(y)
y I 0

ρδ · β(y)
y ρδ · I 0

ρδ · β(y)
y ρδ · I+ µδ ·C 0




yt−1

δ1,t−1

δ2,t−1

 (a.19)

Vech
[
V
(
wt

∣∣Ft−1

)]
=



νy

ρδ · νy

ρδ · νy

ρδ · νy (2µδ + ρδ)

ρ2δ · νy

ρδ · νy (2µδ + ρδ)


+



2β
(y)
y 2I 0

2ρδ · β(y)
y 2ρδ · I 0

2ρδ · β(y)
y 2ρδ · I 0

2ρδ · β(y)
y (µδ + ρδ) 2ρδ (µδ + ρδ) · I 0

2ρ2δ · β
(y)
y 2ρ2δ · I 0

2ρδ · β(y)
y (µδ + ρδ) 2ρδ (µδ + ρδ) · I+ 2µ2

δ ·C 0




yt−1

δ1,t−1

δ2,t−1



where ρδ = µδ ·β
(y)
λ . It is easy to check that the system is second-order stationary iff β(y)y < 1−ρδ ·I.11

From Equation (a.19) we obtain the semi-strong VAR representation of wt:12

wt = ν +Φwt−1 +

√
Vec−1 [Ω0 +Ωwt−1] ζt , (a.20)

where ζt is a standardized martingale difference, and Vec−1 is the operator transforming a vector13

into a matrix (column after column). We have:14

E (wt) = (I3 − Φ)−1 ν , Vec [V (wt)] = (I9 − Φ⊗ Φ)−1 [Ω0 +ΩE (wt)]

and Cov (wt, wt−1) = ΦV(wt) .
(a.21)

These formulas will be used to calculate moments of observable variables.15

Filtering-based Estimation: The most standard approach for estimating term structure models16

with unobserved factors is based on approximate Kalman filtering (see e.g. Jong 2000). Compared17

with GMM-based methods, these methods allow to estimate the parameters and back out yt at the18

the extended Kalman filter. We adopt such a procedure in our real-data application in Section 4.
34We use µy = 1 since this parameter is not identified.
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same time. This comes at the cost of a higher computational complexity since the log-likelihood1

computation is performed iteratively and cannot be parallelized.2

The main difficulty of the task lies in the non-linearities both in the transition and measurement3

equations: ζt is non-Gaussian and is characterized by a time-varying conditional covariance, and4

CDS spreads are non-linear functions of the state. A widely-employed method is the extended5

Kalman filter (EKF) which updates the filtered factors as if the data were Gaussian. This relies6

on two approximations, namely that (i) ζt is conditionally Gaussian, and (ii) CDS spreads can be7

dynamically approximated by a linear function of the states through a first-order Taylor expansion8

around their predicted values. Due to these approximations, the EKF does not provide a consistent9

estimator although Monte-Carlo studies show that the bias tend to be small in practice (see e.g.10

Duan and Simonato 1999; Monfort, Pegoraro, Renne, and Roussellet 2017).35 Note that, in our11

context and for CDS spread formula, the derivatives computed with respect to yt can be obtained12

analytically.13

Another filtering-like approach is the so-called “inversion technique” based on Chen and Scott14

1993. We describe this method more in detail below and leave it aside from our Monte-Carlo15

exercise for simplicity.16

For all approximate filtering methods, consistency can be restored in principle by using indirect17

inference. However, such a refinement is likely to be heavy on the computational side, and it is18

unclear if restoring consistency matters from an empirical point of view. We thus also leave it aside19

in our Monte Carlo Experiment.20

Inversion-based Estimation Inversion-based estimation methods are conceived around the idea21

that it is possible to recover the factors, date by date, by inverting the functions mapping the factors22

to the observables. Chen and Scott 1993 started with the idea that if some bonds are priced without23

errors, it is possible to exactly recover the values of the factors that generated them. While this is24

a very fast filtering method, it is subject to the arbitrary choice of which bonds to pick for exact25

pricing. This assumption can be relaxed by considering that certain portfolios of yields are priced26

without errors (see e.g. Joslin et al. 2011). In our context, a consistent approach would also require27

to enforce that yt > 0 at all dates, which cannot be guaranteed for any model parameterization28

and dataset. In the general case, solving for latent factors requires numerical optimization through29

e.g. gradient-based methods (see also Andreasen and Christensen 2015). On key advantage with30

respect to filtering-based methods is that the set of optimization problems can be performed in31

parallel, speeding up the estimation process.32

Once the time-series of yt is obtained, the estimation consists in expressing the log-likelihood33

of the observables through Bayes rule. We denote by Obst = {CSt, CDSt, δt} the set of all CDS34

spreads, of all credit spreads, and of the credit event variables δt that are observable to the econome-35

trician. We are looking for the one-period conditional log-likelihood function L
(
Obst

∣∣Obst−1

)
. We36

also denote by Obs∗t the set of observables deprived of one credit spread. When the model is well-37

specified, there exists an invertible and deterministic function gt(•) such that Obst = gt (Obs∗t , yt).38

The conditional quasi log-likelihood can be written in terms of both Obs∗t and yt:39

L
(
Obst

∣∣Obst−1

)
= L

(
gt (Obs∗t , yt)

∣∣Obst−1

)
= L

(
Obs∗t , yt

∣∣Obst−1

)
+ log

∣∣∣∣∂g−1
t (Obst)

∂Obst

∣∣∣∣ .
35More accurate approximations can be obtained for approximate filters. The second-order extended Kalman filter

uses second-order Taylor approximation to perform the filtering recursions. The UKF uses a set of so-called “sigma-
points” that are propagated through the non-linear state-space in the filtering recursions. The reader may refer to
Christoffersen, Dorion, Jacobs, and Karoui (2014) for the latter.
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For all dimensions but one, the function gt is equal to identity since it transforms elements of Obst1

into itself. The last dimension is trivial when only bond credit spreads are used (because they are2

affine in yt), and more complicated when adding CDSs (that are not affine in yt). This leads the3

Jacobian matrix to be triangular with only one element on the diagonal different from one, and its4

determinant is exactly equal to that entry, denoted by ℓy,t. Next, we can use Bayes rule to expand5

the conditional log-likelihood as:6

L
(
Obst

∣∣Obst−1

)
= L

(
CS∗t , CDSt

∣∣yt, δt)+ L
(
yt, δt

∣∣Obst−1

)
+ log |ℓy,t| . (a.22)

The first term of the log-likelihood represents the joint Gaussian distribution of the measure-7

ment errors εt and ηt. The second term represents the dynamics of the risk factors and can be8

approximated by a conditionally Gaussian log-likelihood using the transition Equations (a.19).369

Moments-based Estimation: One of the key advantages of writing an affine model is that both10

conditional and marginal moments of all factors are available analytically. This naturally opens11

the way for method of moments estimation. Although it would be possible to use instruments to12

attain the efficiency bound of the GMM estimator, we abstract from efficiency issues and directly13

consider marginal moments here.37 This also has the natural advantage to avoid having to filter yt14

values.15

Several types of moments can be used for estimation. In particular, the conditional and marginal16

default probabilities are closed-form functions of the parameters in Θ:17

Pt−1 (δ2,t > 0) = 1− e
−

β
(y)
λ

1+β
(y)
λ

β
(y)
y yt−1−

(
β
(y)
λ

1+β
(y)
λ

I+C

)
δ1,t−1−νy log

(
1+β

(y)
λ

)
(a.23)

P (δ2,t > 0) = 1−

[(
1 + β

(y)
λ

)+∞∏
i=1

(
1 + pi +

µδqi
1 + µδqi

)]−νy

, (a.24)

where the recursions for pi and qi are provided below. Second, the moments of bond credit spreads18

are those of an affine transformation of the factors and are thus attainable in closed-form, including19

mean, variance, and autocovariance for instance. Last, including moments of the CDS data is more20

challenging because of the nonlinearity of the pricing formula. One can circumvent this problem by21

either using a simulated method of moments (SMM) or by performing a first-order Taylor expansion22

of the exponential functions in the CDS pricing formula.23

Recursions for Default Probabilities The recursions for the default probabilities are given24

by:25

pn =
pn−1 + µδqn−1

(
β
(y)
λ + pn−1

)
1 + pn−1 + µδqn−1

(
1 + β

(y)
λ + pn−1

) · β(y)y

qn =
pn−1 + µδqn−1

(
β
(y)
λ + pn−1

)
1 + pn−1 + µδqn−1

(
1 + β

(y)
λ + pn−1

) · I ,

36Note that it would be technically possible to use the exact likelihood for the autoregressive gamma processes,
but it can only be expressed with Bessel functions whose computation involve numerically intensive methods.

37Optimal instrumentation can be performed by using a continuum of moments as in Carrasco, Chernov, Florens,
and Ghysels (2007).
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where the initial values are given by p1 =
β
(y)
λ

1+β
(y)
λ

β
(y)
y and q1 =

β
(y)
λ

1+β
(y)
λ

I+C ·1{i=2}. Let us show this1

result by computing the default probability of the second entity.2

Pt−1 (δ2,t = 0) = Pt−1 (P2,t = 0)

= Et−1

[
Pt−1 (P2,t = 0)

∣∣yt]
= Et−1

[
exp

(
−β(y)λ yt −C · δ1,t−1

)]
= exp

(
−C · δ1,t−1 −

β
(y)
λ

1 + β
(y)
λ

(
β(y)y yt−1 + I · δ1,t−1

)
− νy log

(
1 + β

(y)
λ

))
.

We can thus write:3

Pt−1 (δ2,t = 0) = exp (−q1δ1,t−1 − p1yt−1 − a1) ,

where p1 and q1 are given by the expressions above and a1 = νy log(1 + β
(y)
λ ). Using the law of4

iterated expectations, we can write:5

Pt−n (δ2,t = 0) = exp (−a1)× Et−n [exp (−q1δ1,t−1 − p1yt−1)] .

Since the joint process wt is affine, this expression can be transformed as:6

Pt−n (δ2,t = 0) = exp (−qnδ1,t−n − pnyt−n − an) .

The recursions can be obtained by going one step further in the law of iterated expectations:7

Pt−n (δ2,t = 0) = Et−n [exp (−qn−1δ1,t+1−n − pn−1yt+1−n − an−1)]

= e−an−1 × Et−n

[
exp

(
− µδqn−1

1 + µδqn−1
β
(y)
λ yt+1−n − pn−1yt+1−n

)]
= e−an−1 × Et−n

[
exp

(
−
[
pn−1 +

µδqn−1

1 + µδqn−1
β
(y)
λ

]
yt+1−n

)]

= exp

[
− an−1 −

pn−1 +
µδqn−1

1+µδqn−1
β
(y)
λ

1 + pn−1 +
µδqn−1

1+µδqn−1
β
(y)
λ

(
β(y)y yt−n + I · δ1,t−n

)

− νy log

(
1 + pn−1 +

µδqn−1

1 + µδqn−1
β
(y)
λ

)]
.

We simplify:8

pn−1 +
µδqn−1

1+µδqn−1
β
(y)
λ

1 + pn−1 +
µδqn−1

1+µδqn−1
β
(y)
λ

=
pn−1 (1 + µδqn−1) + µδqn−1β

(y)
λ

(1 + pn−1) (1 + µδqn−1) + µδqn−1β
(y)
λ

=
pn−1 + µδqn−1

(
pn−1 + β

(y)
λ

)
1 + pn−1 + µδqn−1

(
1 + pn−1 + β

(y)
λ

) .
By identification we obtain:9

pn =
pn−1 + µδqn−1

(
β
(y)
λ + pn−1

)
1 + pn−1 + µδqn−1

(
1 + β

(y)
λ + pn−1

) · β(y)y

qn =
pn−1 + µδqn−1

(
β
(y)
λ + pn−1

)
1 + pn−1 + µδqn−1

(
1 + β

(y)
λ + pn−1

) · I

an = an−1 + νy log

(
1 + pn−1 +

µδqn−1

1 + µδqn−1
β
(y)
λ

)
.
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Developing the recursion on an, we have:1

an = νy log
(
1 + β

(y)
λ

)
+ νy

n−1∑
i=1

log

(
1 + pi +

µδqi
1 + µδqi

β
(y)
λ

)
.

A.4.3 Estimation Details2

We simulate trajectories of length 20 years (240 periods) and obtain 500 trajectories where no3

default is observed and 500 where at least one default is observed. We do this for each of the4

four scenarios used in the comparative statics, i.e. baseline, contagion, systemic, and surprise5

(see Subsection A.3). For each trajectory, we estimate the set of parameters in Θ. We impose no6

restrictions beside all parameters being positive and the stationarity condition (see online Appendix7

A.4.2). For each method, we perform the same exercise using either bond credit spreads only,8

or bond credit spreads and credit event variables. To ensure comparability across methods, we9

initialize the parameter values as if all channels were switched on at the same time.10

For the approximate filtering, we initialize our filter at the marginal mean and variance of11

the process. When δt is included in the set of observables, we impose no measurement errors12

and initialize its value at zero, with zero variance and covariance with yt. For moment-based13

estimation, we operate an optimal two-step estimation where the second-step weighting matrix is14

adjusting for the autocorrelation of moments using Newey-West formula with 5 lags. We include15

the mean, variance-covariance and first order autocorrelation of the 10 credit spreads, resulting in16

165 moments. When δt is included in the observables, we add the mean, variance-covariance and17

default frequency of the two credit-event processes, resulting in 7 additional moments.18

A.4.4 Results19

We present the estimation results for the approximate filtering in Tables A.4 and A.5, excluding20

and including δt, respectively. The GMM estimation results are provided in Tables A.6 and A.7,21

with a similar structure as the filtering results. The main result of the Monte-Carlo exercise is that22

the approximate filter is relatively more efficient in estimating the parameters and detecting which23

channel is switched on than our GMM-based method. We detail this result below.24

Looking at the filtering results, we observe that the average and median estimated parameters25

are nearly always close to the true value, irrespective of the inclusion of δt. When there are observed26

defaults in the sample, the confidence bands tend to shrink, consistently with the intuition that27

more information provides more discriminatory power. Additionally, the filtering method is very28

efficient in separating the effects of each different channel. For the baseline, systemic and surprise29

scenarios, Table A.4 shows that the median of estimated parameters is close to zero when the30

channel is switched off, and close to the parameter value otherwise. The only exception is for the31

contagion scenario when δt is not included. When defaults are observed, the average parameter32

value of Ĉ · 10−3 is 3.04 below the true value of 5.756 but the average value of Î is slightly positive33

at 0.025 and the average of Ŝ · 10−3 is 2.198 (see Table A.4). When no defaults are observed,34

the problem is amplified and the contagion parameter gets to virtually zero while the other two35

are inflated. This problem is nearly entirely corrected by adding the δt in the observables, which36

disciplines the estimation method (Table A.5). the contagion parameter Ĉ · 10−3 now jumps to 5.237

when defaults are observed, and 3.15 when they are not. The filter still attributes somewhat of an38

effect to the surprise parameter (0.288 and 1.371, respectively), but the effect is largely dampened.39

Including the credit-event processes in the set of observables may however have drawbacks.40

First, it can create numerical instability for several trajectories. For both the baseline and the41
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surprise cases when defaults are observed, the average of the parameter ρδ goes to more than 18,1

compared to the true value of 0.025. However, this problem is likely due to only a few trajectories2

since the medians are exactly equal to the true value and the confidence intervals are contained, with3

a 95% quantile equal to 0.092 and 0.027, respectively. Second, adding defaults in the observables4

increases substantially the computation time needed for convergence of estimation (see Table A.8).5

Last, including δt in the observables suppresses the filtering errors on the credit event series but6

automatically increases the errors on the common factor yt.7

Our GMM estimation shows at least two major issues with respect to the approximate filtering8

method. First, irrespective of whether δt is included for estimation or not, the averages of parame-9

ters and confidence bands are much larger than for the approximate filter, up to very unreasonable10

values. When we include moments about δt in the estimation, the results usually get worse and11

some parameters explode to accommodate for the jumps on the time series. Second, For all cases,12

the GMM estimators are almost incapable of retrieving which channel was switched on. We con-13

clude from this exercise that a GMM method based on marginal moments alone cannot precisely14

pinpoint the credit risk channels in finite samples.15
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Table A.8: Computational Time and Filtering Errors: Approximate Filter

Mean Stdev 5%
quantile Median 95%

quantile

B
as

el
in

e

δ t
=

0

Time (sec) (wo/ δt) 143.63 120.68 53.96 110.7 326.35
(w/ δt) 535.29 630.11 80.79 246.28 1985.27

ŷt − yt
(wo/ δt) 0.018 0.118 -0.071 0.002 0.169
(w/ δt) -0.047 0.271 -0.499 0.001 0.189

δ̂1,t − δ1,t (wo/ δt)
0.027 0.084 0 0 0.159

δ̂2,t − δ2,t 0.021 0.054 0 0 0.13

δ t
>

0

Time (sec) (wo/ δt) 103.84 94.95 49.09 79.53 237.41
(w/ δt) 334.72 475.33 54.49 164.83 1516.16

ŷt − yt
(wo/ δt) -0.01 0.113 -0.177 0.001 0.12
(w/ δt) -0.262 1.604 -2.948 0.025 1.459

δ̂1,t − δ1,t (wo/ δt)
-0.065 2.216 0 0.004 0.461

δ̂2,t − δ2,t -0.085 2.352 0 0.004 0.425

C
on

ta
gi

on

δ t
=

0

Time (sec) (wo/ δt) 175.49 199.65 65.72 131.08 349.53
(w/ δt) 843.21 768.66 78.25 435.3 2217.19

ŷt − yt
(wo/ δt) -0.057 0.186 -0.402 -0.001 0.042
(w/ δt) 0.01 0.143 -0.124 0.001 0.183

δ̂1,t − δ1,t (wo/ δt)
0.052 0.175 0 0 0.29

δ̂2,t − δ2,t 0.02 0.054 0 0 0.129

δ t
>

0

Time (sec) (wo/ δt) 204.87 217.6 67.33 140.11 634.86
(w/ δt) 345.95 415.41 58.52 169.2 1284.22

ŷt − yt
(wo/ δt) -0.163 0.384 -0.983 -0.004 0.029
(w/ δt) 0.131 0.346 -0.201 0.095 0.715

δ̂1,t − δ1,t (wo/ δt)
0.134 1.589 0 0.001 0.365

δ̂2,t − δ2,t -0.089 2.987 0 0.006 0.428

Sy
st

em
ic

δ t
=

0

Time (sec) (wo/ δt) 303.18 339.04 75.56 175.94 1106.98
(w/ δt) 597.7 641.31 69.36 296.12 1963.39

ŷt − yt
(wo/ δt) 0.064 0.447 -0.457 0.05 0.612
(w/ δt) 0.016 0.088 -0.05 0.001 0.142

δ̂1,t − δ1,t (wo/ δt)
0.119 0.435 0 0 0.752

δ̂2,t − δ2,t 0.022 0.053 0.001 0.002 0.131

δ t
>

0

Time (sec) (wo/ δt) 224.16 331.7 58.32 114.32 824.34
(w/ δt) 281.62 394.55 48.72 145.86 1163.66

ŷt − yt
(wo/ δt) 0.035 1.901 -2.13 0.06 1.738
(w/ δt) -0.298 3.569 -5.238 -0.103 4.618

δ̂1,t − δ1,t (wo/ δt)
0.237 2.206 0 0.001 2.327

δ̂2,t − δ2,t -0.083 3.132 0.001 0.018 0.797

Su
rp

ris
e

δ t
=

0

Time (sec) (wo/ δt) 177.85 184.27 67.54 129.83 387.26
(w/ δt) 1016.89 757.9 212.24 602.95 2281.57

ŷt − yt
(wo/ δt) 0.005 0.068 -0.063 0.001 0.085
(w/ δt) 0.026 0.139 -0.068 0.002 0.226

δ̂1,t − δ1,t (wo/ δt)
0.051 0.182 0 0.002 0.27

δ̂2,t − δ2,t 0.021 0.054 0 0 0.13

δ t
>

0

Time (sec) (wo/ δt) 167.14 153.83 62.26 117.63 412.91
(w/ δt) 428.1 473.33 74.17 277.57 1594.72

ŷt − yt
(wo/ δt) -0.012 0.071 -0.132 0.001 0.06
(w/ δt) 0.058 0.463 -0.539 0.045 0.712

δ̂1,t − δ1,t (wo/ δt)
-0.021 2.311 0 0.004 0.717

δ̂2,t − δ2,t -0.085 2.352 0 0.004 0.426

Notes: In the case where δt is included in the measurement equations and filtered, the filtering errors are null by
construction and unreported. Computations where performed in parallel on the ComputeCanada cluster where all
CPUs are Intel Platinum 8160F Skylake 2.1Ghz.
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Table A.9: Computational Time: two-step GMM

Mean Stdev 5%
quantile Median 95%

quantile

B
as

el
in

e δt = 0
(wo/ δt) 295.96 230.18 80.94 222.65 778.9

(w/ δt) 204.56 151.86 73.98 140.32 518.84

δt > 0
(wo/ δt) 244.57 181.95 100.49 181.28 556.46

(w/ δt) 138.16 79.24 73.42 121.21 250.22

C
on

ta
gi

on δt = 0
(wo/ δt) 259.1 210.83 63.38 209.06 614.02

(w/ δt) 191.59 142.99 78.45 143.34 532.8

δt > 0
(wo/ δt) 271.07 204.78 79.78 197.42 676.03

(w/ δt) 142.26 72.48 75.78 127.19 272.14

Sy
st

em
ic δt = 0

(wo/ δt) 220.68 157.16 56.6 189.96 559.98

(w/ δt) 170.17 76.61 78.67 163.92 330.99

δt > 0
(wo/ δt) 209.96 169.93 56.57 161.95 508.72

(w/ δt) 141.67 59.51 75.76 137.55 239.16

Su
rp

ris
e δt = 0

(wo/ δt) 252.56 208.05 60.16 208.3 599.67

(w/ δt) 192.9 148.03 79.33 142.25 534.37

δt > 0
(wo/ δt) 208.51 148.09 70.6 159.27 482.75

(w/ δt) 143.26 69.59 78.12 130.85 257.65

Notes: In the case where δt is included in the measurement equations and filtered, the filtering errors are null by
construction and unreported. Computations where performed in parallel on the ComputeCanada cluster where all
CPUs are Intel Platinum 8160F Skylake 2.1Ghz.
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A.5 Sovereign Credit Risk Application (Section 4)1

A.5.1 Calibration of µδi in the Sovereign Credit Risk Application2

Data on 1983-2015 sovereign defaults – and more specifically to the associated recovery rates – are3

used to calibrate µδi , which defines the scale of credit events δi,t. Default data are from Moody’s4

(2016). They cover 22 sovereign defaults: Russia (1998), Pakistan (1999), Ecuador (1999), Ukraine5

(2000), Ivory Coast (2000), Argentina (2001), Moldova (2002), Uruguay (2003), Nicaragua (2003),6

Grenada (2004), Dominican Republic (2005), Belize (2006), Seychelles (2008), Ecuador (2008),7

Jamaica (2010), Greece (2012), Greece (2012), Belize (2012), Cyprus (2013), Jamaica (2013), Ar-8

gentina (2013), Ukraine (2015).9

Two kinds of recovery rate estimates are considered by Moody’s (2016, Exhibit 11). The first10

one is based on the 30-day post-default price or distressed exchange trading price. The second is11

the ratio of the present value of cash flows received as a result of the distressed exchange versus12

those initially promised, discounted using yield to maturity immediately prior to default. For each13

default, we compute the average of the two ratios when both are available and we take the only one14

that is available otherwise. Let’s denote by ϱi, i ∈ 1, . . . , 22, the resulting recovery rates. Panel (a)15

of Figure A.3 shows an histogram of − log(ϱi).16

Conditional on a default at date t (i.e. δi,t > 0), the distribution of δi,t is approximately a17

gamma distribution with a unit shape parameter and a scale parameter of µδi . (The approximation18

is accurate if the date-t probabilities of default, conditional on (wt−1, yt) are small.) Note further19

that, under the RMV specification used in our application, we have δi,t ≡ − log(ϱi,t). Therefore,20

the sample average of the − log(ϱi), that is 0.6, is used as an estimate of µδi . The black solid line21

appearing on Figure A.3 shows the resulting approximate distribution of − log(ϱi,t).22

A.5.2 Maximum Sharpe Ratio between Dates t and t+ h23

The maximum Sharpe ratio of an investment realized between dates t to t + h is given by (see
Hansen and Jagannathan 1991):

Mt,t+h =

√
Vart(Mt,t+h)

Et(Mt,t+h)
.

Using the notation Mt,t+1 = exp(µ0,m+µ′1,mwt+1+µ
′
2,mwt) (where the µi,m’s are for instance easily24

deduced from Equation 26), we have:25

Mt,t+h = exp
(
hµ0,m + µ′2,mwt

)
×

exp
(
[µ1,m + µ2,m]′wt+1 + · · ·+ [µ1,m + µ2,m]′wt+h−1 + µ′1,mwt+h

)
Therefore, using the notation φP

wt(h)
(u, v) ≡ Et(exp(u

′wt+1 + · · ·+ u′wt+h−1 + v′wt+h)), we get:26

Mt,t+h =

√
φP
wt(h)

(2[µ1,m + µ2,m], 2µ1,m)− φP
wt(h)

(µ1,m + µ2,m, µ1,m)2}

φP
wt(h)

(µ1,m + µ2,m, µ1,m)

=
√

exp{logφP
wt(h)

(2[µ1,m + µ2,m], 2µ1,m)− 2 logφP
wt(h)

(µ1,m + µ2,m, µ1,m)} − 1.

When wt is an affine process, φP
wt(h)

(u, v) is available in closed-form using recursive formulas re-27

placing Q by P parameters).28
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In practice, we impose the constraint that the maximum Sharpe ratio is below 1 by infinitely1

penalizing the value of the filter-based likelihood for sets of parameters that does not meet this re-2

quirement. This is the approach proposed by Duffee 2010 (see his Subsection 6.5). We acknowledge3

that this penalization procedure can create numerical instability during the optimization procedure4

and renders the inference procedure non-standard.5
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Table A.10: Parameter estimates

Model (1) (2) (3) (4) (5) (6) (7) (8)

β
(x)
λ,DE ×105 3.388 3.269 6.630 4.097 16.706 1.281 21.403 2.666

β
(x)
λ,FR ×105 8.281 8.038 14.579 10.299 10.758 2.746 15.374 5.300

β
(x)
λ,IT ×104 5.043 4.934 9.260 6.614 0.659 1.320 0.589 2.599

β
(x)
λ,SP ×104 2.809 2.862 4.499 3.775 1.633 0.813 1.673 1.456

β
(x)
λ,GR ×102 1.469 1.206 2.929 2.201 1.076 0.322 1.468 0.818

cDE 0.000 – 0.000 – 0.040 – 0.045 –

cFR 0.017 – 0.020 – 0.220 – 0.261 –

cIT 0.078 – 0.133 – 2.597 – 3.485 –

cSP 0.280 – 0.564 – 2.460 – 1.831 –

cGR 0.016 – 0.495 – 11.838 – 47.849 –

κc,DE 0.023 – 0.040 – 0.051 – 0.059 –

κc,FR 0.448 – 0.002 – 0.490 – 0.514 –

κc,IT 0.000 – 0.000 – 0.173 – 0.212 –

κc,SP 0.522 – 0.944 – 0.279 – 0.210 –

κc,GR 0.007 – 0.014 – 0.007 – 0.005 –

νz ×102 44.014 64.854 60.875 50.276 – – – –

1− β
(z)
z ×103 26.434 25.576 26.125 38.538 – – – –

νx ×101 0.060 0.005 0.018 0.000 0.061 1.381 0.067 1.544

β
(z)
x ×102 0.196 0.171 0.135 0.270 – – – –

1− β
(x)
x ×102 2.511 1.822 2.163 3.556 1.603 0.712 0.394 2.906

αr ×102 0.463 0.457 0.446 0.466 0.437 3.939 0.478 3.461

µr ×105 0.548 0.556 0.561 0.574 0.539 0.570 0.665 0.919

βr ×10−5 1.826 1.797 1.784 1.741 1.856 1.752 1.503 1.088

θz ×103 6.572 7.348 6.648 14.511 – – – –

θx ×102 8.639 7.594 8.848 11.999 9.698 4.849 6.629 10.995

θr ×10−2 2.154 2.181 2.234 2.136 2.281 0.248 2.083 0.279

S 2.332 1.933 – – 0.448 3.084 – –

ℓ 0.109 0.000 0.055 0.000 0.353 0.106 0.588 0.000

σRF 0.291 0.291 0.291 0.291 0.287 0.295 0.291 0.292

ηCDS 0.152 0.155 0.150 0.156 0.171 0.259 0.166 0.257

Sharpe 1.00 1.00 0.44 1.00 0.55 1.00 0.35 0.98

log-lik. –13768 –13847 –13819 –13917 –14270 –15136 –14246 –15213
Note: Models (Eqs. 24, 25 and 26) are estimated by MLE. “−” indicates parameters that are constrained
to be equal to zero. Model (1) is the baseline model; Models (5) to (8) feature no frailty factor (zt) and
Models (2), (4), (6) and (8) feature no contagion. σRF is the standard deviation of the measurement errors
associated with risk-free zero-coupon yields, expressed in percent. The standard deviation of the measure-
ment errors associated with a given CDS spread is equal to ηCDS multiplied by the sample standard deviation
of the considered CDS spread. In Equation (24), Ci is given by ciκc, the n = 5 components of κc being given
in the table. The components of the vector of country weights κM , appearing in the SDF (Equation 26),
sum to one and are proportional to countries’ 2018 GDPs raised to the power of ℓ. “Sharpe” reports the
sample average of the one-year maximum Sharpe ratio. The set of admissible parameters is restricted to the
area resulting in an average maximum Sharpe ratios that is lower than 1.
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Figure A.3: Sovereign recovery rates
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Note: This figure displays an histogram of − log(ϱi), where ϱi, i ∈ 1, . . . , 22, are estimates of the recovery rates
associated with sovereign defaults that took place over the last thirty years (Moody’s 2016). In the RMV specification,
− log(RR) is identical to the credit-event variable δ. The red line shows the density function of a gamma distribution
with a shape parameter of 1 and a scale parameter of 0.6, which is the sample mean of − log(ϱ). In the model, this
gamma distribution approximately corresponds to the distribution of δi,t conditional on default (i.e. on δi,t > 0).
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Figure A.4: Estimated factors
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Note: This figure displays the estimated (smoothed) components of yt = [rt, zt, x
′
t]
′ (see Subsection 4.1 for a descrip-

tion of these factors). The grey areas are symmetric two-standard-deviation bands, reflecting Kalman-smoothing
uncertainty. Since the Kalman smoother is approximate for non-Gaussian factors, these confidence bands are approx-
imated as well (and can be negative); this is merely an indication of smoothing uncertainty. As regards factors zt and
xt, the wideness of the grey bands for the first few periods results from the absence of CDS data before December
2007. For Greece: the vertical dashed bar indicates the default period (March 2012).
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Figure A.5: Observed vs model-implied risk-free yields
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Note: The gray lines correspond to the model-implied risk-free yields, expressed in percent. The data span the period
from January 2007 to July 2019 at the monthly frequency. The thin black line corresponds to (model-implied) P
risk-free yields, defined as the credit-risk-free yields that would be observed if agents were not risk averse (obtained
by setting the prices of risk, i.e. θx, θy, θr and S, to zero).
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